Home Application Download FAQ
English
English
繁體中文
日本語
Español
Français
Deutsch
Pусский
Português
Italiano
한국어
Nederlands
العربية

Where does sora live?

The sora's breeding habitat is marshes throughout much of North America. They nest in a well-concealed location in dense vegetation. The female usually lays 10 to 12 eggs, sometimes as many as 18, in a cup built from marsh vegetation. The eggs do not all hatch together. Both parents incubate and feed the young, who leave the nest soon after they hatch and are able to fly within a month. Soras are commonly reported in plant communities dominated by cattails (Typha spp.), sedges (Carex spp.), bulrushes (Scirpus spp.), smartweeds (Polygonum spp.), rushes (Juncus spp.), rice cutgrass (Leersia oryzoides), and barnyard grasses (Echinochloa spp.). Outside of wetlands, soras are most often reported in cultivated areas during migration or in the postbreeding period. For instance, a sora was observed 3 mi (4.8 km) from marshland in a cultivated field in Iowa in the middle of August. A male sora was observed less than 1,000 ft (300 m) from a large wetland in a soybean (Glycine max) field in northwestern Iowa during the postbreeding period. From early June to mid-July, soras were observed on farms in Saskatchewan sown mainly with wheat (Triticum aestivum). Soras have also been reported in flooded wooded areas. In western New York, soras occurred during the breeding season on a study site where 26% of the area was categorized as "flooded timber," and 5% was classed as "scrub/shrub marsh". In eastern and central Maine, an average of 2.1 soras was observed in wooded swamps per 100 hours of observation during the breeding season. On a nonbreeding (August–April) site in southwestern Arizona, soras were found to use a "mixed shrub community" more than expected based on its availability. Soras were observed at low abundances on a site with douglas-fir (Pseudotsuga menziesii), ponderosa pine (Pinus ponderosa), and trembling aspen (Populus tremuloides) in British Columbia. Soras use areas with a wide range of water depths. They are often observed in water less than 1 ft (30 cm) deep, although the average water depth of sora heavy-use areas in Arizona was 20 in (51 cm) . In northwestern Iowa, average water depth in sora territories was 15 in (38 cm), which was significantly (p<0.025) more shallow than water depths at random locations in the marsh. Sora nesting sites occurred in shallower water than random sites in western New York. Average water depths reported at nest sites range from 4 in (10 cm) for 4 sora nests in Colorado to nearly 10 in (25 cm) for sora nests in western New York. In areas of deep water, soras typically wade on mats of floating vegetation. Water level fluctuations may result in nest abandonment. For example, at a site in Colorado where water level increased more than 8 in (20 cm), a sora nest with 7 eggs was abandoned. In Alberta, soras nested in more vegetation types during a drought year, most likely due to substantially reduced water levels in the vegetation used the previous year. Soras use areas with shallower water in fall than in spring. Soras typically avoid open water. There is a significant (p≤0.05) negative relationship between area of open water and sora use of wetlands in Maine and sora relative abundance in Saskatchewan. In western New York, sora nesting sites had a lower percentage of open water than random sites, and in Arizona soras used open water areas less than their availability. Sora nesting sites had larger percentage of emergent vegetation than random sites in marshes of western New York. Sora numbers in wetlands of northeastern North Dakota were significantly (p<0.05) positively correlated (r=0.45) with hectares of live emergent vegetation. In east and central Maine, wetlands used by soras had significantly (p=0.01) greater area of emergent vegetation than unused wetlands. Density of emergent vegetation in sora habitat varies. Reported density of emergent vegetation ranges from an average of 121.9 stems/m in sora territories in northwestern Iowa to 333 stems/m on sites in northeastern Missouri used during fall migration. In western New York, cover was greater than 70% at 95% of sora nests. In addition, nesting sites had more horizontal cover at 20 inches (0.5 m) above water level than random sites. However, average stem density on sora territories was not significantly (p>0.05) different from random sites in northwestern Iowa. Height of emergent vegetation in sora habitat also varies. It ranged from 8 to 11 in (20 to 28 cm) in the spring after a winter disturbance in northwestern Iowa to 84 in (210 cm) in areas heavily used by soras in Arizona. In marshes of western New York, average vegetation height at sora nesting sites was shorter than at random locations. However, the average height of emergent vegetation in sora territories in northeastern Iowa was not significantly (p>0.05) different from the height of vegetation in random plots. In Arizona, both cover and height of vegetation used by soras varied with seasons. Conway suggested the differences likely reflected the varied diet of the sora. The availability of habitat in different seasons is another possible source of seasonal differences in sora habitat. Extent of woody vegetation surrounding South Dakota wetlands was not significantly (p=0.6) associated with sora occurrence. However, in marshes of western New York, there was a significant (p=0.041) negative relationship between percent flooded timber on a site and sora relative abundance. Soras may prefer some cover types. In Arizona, 65.3% of sora use was in southern cattail (Typha domingensis), although it comprised only 16.5% of the vegetation. Bulrushes and a mixed-shrub community were also used more than their availability, while saltcedar (Tamarix chinensis) and arrowweed (Pluchea sericea) were avoided. A literature review notes sora avoidance of purple loosestrife (Lythrum salicaria)-dominated sites. In east and central Maine, wetlands used by soras had significantly (p=0.05) more ericaceous vegetation, such as leatherleaves (Chamaedaphne spp.), sweetgales (Myrica spp.), and laurels (Kalmia spp.). In marshes of northwestern Iowa, broadleaf arrowhead (Sagittaria latifolia) occurred in sora territories significantly (p<0.01) more often than at random sites. Johnson and Dinsmore imply that this likely results from both species preferring similar site conditions. In May and June in Wisconsin, soras were detected significantly (p<0.025) more often in cattail (Typha spp.) survey areas than in sedge areas. However, in southeastern Wisconsin during the breeding season, there was no significant (p=0.943) difference in sora densities between habitats comprised predominantly of cattail, sedge, or bulrush. In addition, soras' use of glaucous cattail (Typha × glauca), broadfruit bur-reed (Sparganium eurycarpum), sedge, river bulrush (Schoenoplectus fluviatilis), and hardstem bulrush (S. acutus var. acutus) habitats in marshes of northwestern Iowa generally reflected availability of these habitats. Seasonal differences in sora habitat use have been reported. In northeastern Missouri in spring, the likelihood of detecting sora in robust emergents, such as cattail (Typha spp.) and longroot smartweed (Polygonum amphibium var. emersum), was over 6 times that of detecting soras in these areas in fall. However, availability of habitats during various times of the year was not addressed. In a study performed in southeastern Missouri, plant species used by sora during spring and fall migration differed significantly (p=0.005). However, the author qualifies this finding with his observation of major seasonal differences in vegetation availability.
Sora (Porzana carolina) Sora (Porzana carolina) Photo By J Jongsma , used under CC-BY-SA-2.0 /Cropped and compressed from original

Scientific Classification

Download Picture Bird
Identify any bird by photo or sound in seconds
Cookie Management Tool
In addition to managing cookies through your browser or device, you can change your cookie settings below.
Necessary Cookies
Necessary cookies enable core functionality. The website cannot function properly without these cookies, and can only be disabled by changing your browser preferences.
Analytical Cookies
Analytical cookies help us to improve our application/website by collecting and reporting information on its usage.
Cookie Name Source Purpose Lifespan
_ga Google Analytics These cookies are set because of our use of Google Analytics. They are used to collect information about your use of our application/website. The cookies collect specific information, such as your IP address, data related to your device and other information about your use of the application/website. Please note that the data processing is essentially carried out by Google LLC and Google may use your data collected by the cookies for own purposes, e.g. profiling and will combine it with other data such as your Google Account. For more information about how Google processes your data and Google’s approach to privacy as well as implemented safeguards for your data, please see here. 1 Year
_pta PictureThis Analytics We use these cookies to collect information about how you use our site, monitor site performance, and improve our site performance, our services, and your experience. 1 Year
Cookie Name
_ga
Source
Google Analytics
Purpose
These cookies are set because of our use of Google Analytics. They are used to collect information about your use of our application/website. The cookies collect specific information, such as your IP address, data related to your device and other information about your use of the application/website. Please note that the data processing is essentially carried out by Google LLC and Google may use your data collected by the cookies for own purposes, e.g. profiling and will combine it with other data such as your Google Account. For more information about how Google processes your data and Google’s approach to privacy as well as implemented safeguards for your data, please see here.
Lifespan
1 Year

Cookie Name
_pta
Source
PictureThis Analytics
Purpose
We use these cookies to collect information about how you use our site, monitor site performance, and improve our site performance, our services, and your experience.
Lifespan
1 Year
Marketing Cookies
Marketing cookies are used by advertising companies to serve ads that are relevant to your interests.
Cookie Name Source Purpose Lifespan
_fbp Facebook Pixel A conversion pixel tracking that we use for retargeting campaigns. Learn more here. 1 Year
_adj Adjust This cookie provides mobile analytics and attribution services that enable us to measure and analyze the effectiveness of marketing campaigns, certain events and actions within the Application. Learn more here. 1 Year
Cookie Name
_fbp
Source
Facebook Pixel
Purpose
A conversion pixel tracking that we use for retargeting campaigns. Learn more here.
Lifespan
1 Year

Cookie Name
_adj
Source
Adjust
Purpose
This cookie provides mobile analytics and attribution services that enable us to measure and analyze the effectiveness of marketing campaigns, certain events and actions within the Application. Learn more here.
Lifespan
1 Year
Download